Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(4): 1550-1560, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34402072

RESUMO

BACKGROUND: Vegetable oils are yearly produced in large amounts generating solid by-products, the oilseed cake (OC). OCs are lignocellulosic materials that have been used for animal feed with some limitations due to high fibre content from the plant cell walls. Biotechnological processes can help to overcome these limitations and contribute to up-grading such by-products, enhancing their nutritional value as feed ingredients. RESULTS: All fungal species were able to decrease neutral detergent fibre and acid detergent fibre in all by-products. Additionally, relevant enzymes were produced by the three fungi studied resulting in an improved antioxidant capacity of all fermented OCs. Aspergillus niger led to the highest activity of cellulase (109 U g-1 ), xylanase (692 U g-1 ) and protease (157 U g-1 ) per dry OC matter and to the recovery of an extract rich in antioxidants, with the highest scavenging potential of free radicals and superoxide anion, iron chelation ability and reducing power. Rhyzopus oryzae produced the highest activity of ß-glucosidase (503 U g-1 ) and led to the highest liberation of total phenolic content (TPC). Principal components analysis showed that extracts with high antioxidant potential were obtained in solid-state fermentation (SSF) with high enzymatic activity. A positive correlation was established between the action of ß-glucosidase and TPC. CONCLUSION: Within the same bioprocess it was possible to improve the nutritional value of OCs and to obtain relevant bioactive compounds such as lignocellulosic enzymes and phenolic compounds with antioxidant potential, resulting in a significant improvement of already valuable by-products with commercial interest for animal feed. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Lignina , Animais , Aspergillus niger , Fermentação
2.
Front Pharmacol ; 12: 761551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899314

RESUMO

The growth location and plant variety may influence the active components and biological activities of plants used in phytomedicine. In this study, nine sets of different Epimedii Folium, from different representative cultivation locations and Epimedium species, were collected for comparison, using HPLC-DAD combined with multivariate analysis. The objective was to investigate the influence of geographical origin and Epimedium species on the quality of Epimedii Folium, and provide applicable guidance for cultivation and quality control of Epimedii Folium. Several Epimedium spp. sets were used to establish the HPLC-DAD fingerprints and 91 peaks (compounds) were selected for the multivariate analysis. Major compounds were analyzed by HPLC-DAD combined with principal component analysis (PCA). HPLC quantitative analysis of known bioactive compounds was performed. Application of PCA to HPLC data showed that Epimedium samples sharing the same geographical origin or species clustered together, indicating that both species and geographical origin have impacts on the quality of Epimedii Folium. The major bioactive flavonoid compounds, epimedin C, icariin and baohuoside I, were identified and quantified. The concentration of bioactive compounds was significantly influenced both by species and geographical origin. E. sagittatum from Sichuan showed the highest content of bioactive compounds. The results showed that both Epimedium species and geographical origin have strong impact into quality of Epimedii Folium. HPLC data combined with multivariate analysis is a suitable approach to inform the selection of cultivation areas and choose Epimedium spp. most suitable for different geographical areas, resulting in improved quality of Epimedii Folium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...